Photocatalytic Activity and Mechanism of Cu2+ Doped ZnO Nanomaterials

Author:

Li Pen-Xin1,Yang Ai-Yun1,Xin Lang1,Xue Biao1,Yin Chun-Hao2

Affiliation:

1. Department of Basic Courses, Xi’an Traffic Engineering Institute, Xi’an, 710300, China

2. School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China

Abstract

The photocatalytic activity and mechanism of photocatalysts made of ZnO nanoparticles before and after doping with different Cu2+ concentrations were studied by electron paramagnetic resonance and X-ray diffraction. The nanoparticles were prepared using sol–gel method. UV-vis spectrometers characterized the photocatalytic degradation effect of the composite samples on methyl orange solution. The results of X-ray diffraction showed that the hexagonal wurtzite structure of ZnO changed little by Cu2+ doping. With the increase in doping concentration, the CuO and Cu2O diffraction peaks were detected successively in the crystal. The results of the electron paramagnetic resonance test for all samples indicated three kinds of unpaired electrons with g factors of 2.07, 1.997, and 1.954. Further analysis confirmed them to be Cu2+, V+O, and Zn–H complexes. Photocatalytic degradation results of methyl orange showed that proper doping (c(Cu2+) = 2%) could improve the photocatalytic activity of ZnO. The main reason for the increase was that the substitution of Cu2+ for Zn2+ in the crystal lattice produced Zni, and the Zn atom could act as the donor to release electrons, so that the number of electrons in the material increased, which indirectly increased the superoxide radical content in the solution and improves the photocatalytic activity of ZnO.

Publisher

American Scientific Publishers

Subject

General Materials Science

Reference31 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3