Analysis of Load-Bearing Electrical Properties of Composite Materials Based on Homogenization Theory

Author:

Wang Ailing1,Wang Ping1

Affiliation:

1. College of Electrical Engineering, Shandong Huayu University of Technology, Dezhou, Shandong, 253034, China

Abstract

In this study, the broadband dielectric spectrum of polyimide composites was examined using the homogenization theory. The findings demonstrate that the addition of boron nitride nanosheets (BNNSs) and silver nanoparticles (AgNPs) causes an increase in conductivity, dielectric constant, and dielectric loss of the composites but does not result in a surge in the three parameters; the results also demonstrate that an increase in temperature causes an increase in dielectric constant and dielectric loss of the composites. In addition, temperature has a bigger impact on the dielectric loss than it does on the dielectric constant. An increase in the amount of polarized charges and a shallower bulk trap depth can result from the addition of nanomaterials, according to research on thermally stimulated current in composite materials. The presence of the interfacial region, which made it simple to cause charge accumulation and simple to form conduction current, is primarily responsible for the significant increase in bulk conductivity of the composites at 50 Hz that occurred with the addition of more nanomaterials. The large rise in bulk conductivity of the composites at 50 Hz that happened with the addition of more nanomaterials is mostly due to the existence of the interfacial region, which made it simple to produce charge buildup and simple to form conduction current. The variation in volume conductivity when the doping ratio is less than 10 vol% is not significant due to AgNPs’ low concentration and ambiguous contribution to the conduction current. As the polarization temperature rises, the amount of polarization charges increases, but it has minimal effect on the bulk trap depth of the composites.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3