Affiliation:
1. College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou, 412007, China
2. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
Abstract
Carbaryl is a broad-spectrum carbamate insecticide widely used to control pests on crops, trees and ornamental plants. Carbaryl residues in fruits and vegetables and other foods can accumulate in the human body and damage human health. Therefore, it is very essential to establish a
sensitive and reliable method for determination of carbaryl. Black phosphorene nanosheets (BPNPs) modified glassy carbon electrode was herein prepared using poly(3,4-dioxyethylenethiophene)-poly(styrene sulfonate) (PEDOT: PSS) as both membrane and stabilizer. The nanocomposites (BP-PEDOT:
PSS) were synthesized by combining BP at the ratio of PEDOT: PSS, which improved conductivity and stability of BP. In order to enhance the electrochemical signal and build the carbaryl aptamer sensor, the surface of BP-PEDOT: PSS was modified by Au nanoparticles (Au NPs). The carbaryl aptamer
modified with sulfhydryl groups was immobilized in the outer layer of Au NPs, and the target carbaryl was specifically recognized and captured by carbaryl aptamer and adsorbed on the electrode surface, thus causing changes in the interfacial electrochemical signal. The conditions were optimized
and characterized by cyclic voltammetry (CV), and linear equation was obtained as ΔI(μA) = −11.35logC−29.70, R2 = 0.997. The detection range was 0.01 ng/mL–10 μg/mL, with a limit of detection of 7.0 pg/mL.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献