Development of DNA Aptamers Against Plasmodium falciparum Blood Stages Using Cell-Systematic Evolution of Ligands by EXponential Enrichment

Author:

Lantero Elena,Belavilas-Trovas Alexandros,Biosca Arnau,Recolons Paula,Moles Ernest,Sulleiro Elena,Zarzuela Francesc,Ávalos-Padilla Yunuen,Ramírez Miriam,Fernàndez-Busquets Xavier

Abstract

New biomarkers have to be developed in order to increase the performance of current antigen-based malaria rapid diagnosis. Antibody production often involves the use of laboratory animals and is time-consuming and costly, especially when the target is Plasmodium, whose variable antigen expression complicates the development of long-lived biomarkers. To circumvent these obstacles, we have applied the Systematic Evolution of Ligands by EXponential enrichment method to the rapid identification of DNA aptamers against Plasmodium falciparum-infected red blood cells (pRBCs). Five 70 b-long ssDNA sequences, and their shorter forms without the flanking PCR primer-binding regions, have been identified having a highly specific binding of pRBCs versus non-infected erythrocytes. Structural analysis revealed G-enriched sequences compatible with the formation of G-quadruplexes. The selected aptamers recognized intracellular epitopes with apparent Kds in the μM range in both fixed and non-fixed saponin-permeabilized pRBCs, improving >30-fold the pRBC detection in comparison with aptamers raised against Plasmodium lactate dehydrogenase, the gold standard antigen for current malaria diagnostic tests. In thin blood smears of clinical samples the aptamers reported in this work specifically bound all P. falciparum stages versus non-infected erythrocytes, and also detected early and late stages of the human malaria parasites Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. The results are discussed in the context of their potential application in future malaria diagnostic devices.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3