Coating of Epimedii Folium Water Extract onto TiO2 Nanotube Surfaces Promotes Differentiation and Proliferation of Osteoblasts

Author:

Wu Fengfeng,Xu Juntao,Jin Mingchao,Jiang Xuesheng,Xu Yan,Li Jianyou,Li Xiongfeng,Nie Jiangbo,Yan Shigui,Wang Guorong

Abstract

The surface modification of titanium is effective in promoting osseointegration and is widely used in the treatment of bone diseases. Epimedii Folium (EF) plays an important role in the treatment of metabolic bone diseases. However, few studies have so far been reported on their combined use in such treatments. In the present study, EF water extract was coated onto the surface of TiO2 nanotubes (TNT) by electrochemical anodization to obtain EF-TNT. Through analysis of surface morphology characteristics, it was demonstrated that EF was successfully coated on the surface of TiO2 nanotubes. In vitro drug release data suggested that the quantity of EF water extract released was a significant quantity over 4 days, reaching a total of 80%, the release continuing in total for approximately 2 weeks. By using scanning electron microscopy and immunofluorescent staining, it was found that, EF-TNT more strongly promoted adhesion, proliferation, and differentiation of MC3T3-E1 osteoblasts compared with Ti and TNT. Quantitative reverse transcript polymerase chain reaction (qRT-PCR) analysis indicated that the expression of key genes for proliferation and differentiation of osteoblasts, such as COL1a1, ALP, OPN, and Runx2, were up-regulated by EF-TNT. Network pharmacology analysis suggested that EF water extract not only regulated the proliferation and differentiation of osteoblasts but also caused a regulatory effect on osteoclasts via multiple signaling pathways, such as RANKL-RANK-induced signaling and TGF-β signaling. These findings indicate that the EF-TNT promotes differentiation and proliferation of osteoblasts, and represents considerable potential for use in clinical applications.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3