Engineered High-Loaded Mixed-Monoclonal Antibodies (Adalimumab, Rituximab and Trastuzumab) Polymeric Nanoparticle for Rheumatoid Arthritis Treatment: A Proof of Concept

Author:

He Yeteng,Xin Yuxuan,Rosas Elaine Cruz,Alencar Luciana Magalhães Rebelo,Santos-Oliveira Ralph,Peng Xianbo,Yu Hongjian,Fu Jinhao,Zhang Wenqiang

Abstract

Rheumatoid arthritis, a chronic disease, affects from 0.5% to 1% of the world population. The main consequences include loss of joint functionality and severe pain, with lost in life quality and increased risk of morbidity and mortality. The main strategy for RA treatment relies in early diagnosis as targeted therapy. In this regard, the development and application of designed/engineered nanoparticles may represent an innovative approach and the key to success, since is a personalized nanodrug. Thus, we have synthetized, characterized, and in vivo evaluated a tri-loaded monoclonal antibody nanoparticle. For the production we used a mix of monoclonal antibodies: adalimumab, rituximab and trastuzumab to surround all RA metabolic pathways. The characterization included atomic force microscopy, dynamic light scattering analysis and entrapment efficacy using BCA analysis. The in vivo evaluation was done in mice. At this stage we used animals to assess the pharmacokinetics, the tissue distribution as the proof of concept (therapeutic efficacy) of the nanoparticles developed in inducted animals with rheumatoid arthritis. The interpretation of our results revealed that a spherical shaped nanoparticle has been produced with a mean size of 229.7 nm, and a polydispersity index of 0.191. This data has been corroborated by DLS and AFM analysis. The pre-clinical (in vivo) evaluation demonstrated a low elimination rate of 2,34 L/hour, with a purge of 0,42 h. The therapeutic efficacy showed that the nanoparticles have an increased therapeutic effect than the conventional drug with a reduction in all main parameters including the interleukins.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3