Prominent Enhancement of Cisplatin Efficacy with Optimized Methoxy Poly(ethylene glycol)-Polycaprolactone Block Copolymeric Nanoparticles
-
Published:2020-03-01
Issue:3
Volume:16
Page:335-343
-
ISSN:1550-7033
-
Container-title:Journal of Biomedical Nanotechnology
-
language:en
-
Short-container-title:j biomed nanotechnol
Author:
Yen Ying-Tzu,Wang Xinyue,Zhang Huan,Wang Chun,Lin Zitong,Xie Chen,Liu Qin,Wang Lifeng,Yu Lixia,Li Xie,Lv Xin,Liu Baorui,Li Rutian
Abstract
Chemotherapy has been one of the major standard treatments for a variety of cancers. cis-Dichlorodiamminoplatiunum (II) (cisplatin, CDDP), as one of the anticancer agents, demonstrated excellent efficacy against tumor and has been an indispensable component in chemotherapy, chemoradiation,
chemo-molecular targeted therapy and chemo-immunotherapy. However, its therapeutic concentration was limited since its inevitable toxicity. Previously, we have constructed CDDPloaded nanoparticles (NPs) with mixture of poly(ethyleneglycol)-polycaprolactone (PEG-PCL) and polycarprolactone (HOPCL)
by a facile method. The most optimal proportion of the two copolymers was selected through a series of physical, chemical, cytological and histological evaluations. In the present study, we explored the mechanisms of NPs and observed the in vivo antitumor effect after administrating CDDP-loaded
PEG-PCL NPs. Positron emission tomography as well as computed tomography (PET/CT) were adopted for detecting tumoral metabolic activity. Images from fluorescence microscope revealed superior cellular uptake of CDDP-loaded NPs with rhodamine B aggregated intracellularly in cancer cells. Similar
apoptotic rates between free CDDP group and CDDP-loaded NPs group was measured by flow cytometry. Tumor volumes and murine weights confirmed the superiority of CDDP-loaded NPs in therapeutic efficacy as compared with free CDDP. Blood tests showed milder side effects in CDDP-loaded nanoparticle
group. PET/CT images illustrated less uptake intensity of FDG in mice received CDDP-loaded NPs than free CDDP. Our results suggest that PEG-PCL/PCL NPs could be a promising antitumor drug carrier for CDDP delivery with solid efficacy and minor side effects.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献