Development in the Heat Transfer Properties of Nanofluid Due to the Interaction of Inclined Magnetic Field and Non-Uniform Heat Source

Author:

Jena S.1,Mishra S. R.2,Pattnaik P. K.3

Affiliation:

1. Department of Mathematics, Centurion University of Technology and Management, 752050, Odisha, India

2. Department of Mathematics, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Khandagiri,Odisha 751030, India

3. Department of Mathematics, College of Engineering and Technology, Bhubaneswar 751029, Odisha, India

Abstract

In the current scenario a new mathematical model is designed and examined for the unsteady course of nanofluid through permeable vertical surface due to the interaction of inclined magnetic field. Radiative heat transfer properties is included assuming the Cogley radiation, dissipative heat energy due to the conjunction o magnetic field i.e., Joule dissipation and the space and time-dependent heat source/sink amplifies the study as well. Depending upon todays need in various industries the implementation of nanofluid is vital. Therefore, present study involves the behavior of both metal and oxide nanoparticles in the base fluid kerosene. Involvement of transformation rules the problem is converted into nonlinear set of ODEs and further these are solved employing approximate analytical technique such as Variational Iteration Method (VIM). The characteristics of various flow parameters are analyzed via graphs and the numerical simulation along with the validation of the result is obtained through tables. The comparative study brings out the convergence criterion of the methodology adopted herein. However, the favorable results are; the fluid temperature augments with increasing nanoparticle volume fraction and suction enriches both the fluid velocity and temperature whereas injection retards it significantly.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3