Numerical Simulation for Flow Through Conducting Metal and Metallic Oxide Nanofluids

Author:

Pattnaik P. K.1,Mishra S. R.2,Sharma Ram Prakash3

Affiliation:

1. Department of Mathematics, College of Engineering and Technology, Bhubaneswar 751029, Odisha, India

2. Siksha ‘O’ Anusandhan Deemed to be University, Khandagiri, Bhubaneswar 751030, Odisha, India

3. Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Yupia, Papum Pare District 791112, Arunachal Pradesh, India

Abstract

Present paper aims to analyze three-dimensional (3D) motion of an electrically conducting nanofluid past an exponentially stretching sheet. Both metal and metal oxide nanoparticles (such as Cu, Al2O3, TiO2) in the base fluid (water) are examined. Nonlinear ordinary differential systems are obtained by suitable transformations. The crux of the analysis is the development of an estimated analytical result obtained by employing the “Adomian Decomposition Method” (ADM), an approximate analytical method. Momentum and energy descriptions with prescribed boundary conditions are employed. The velocity components and temperature are analyzed. Tabulated values are organized aimed at the outcomes of skin-friction coefficients and Nusselt number. Comparison with past limiting results is shown. Finally, the outstanding outcomes of the present result are; the velocity profile with the inclusion of particle concentration and magnetic parameter decelerate significantly and Al2O3 nanoparticles are favorable for the enhancement in the rate of heat transfer.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3