OxyR-Like Improves Cell Hydrogen Peroxide Tolerance by Participating in Monocyte Chemotaxis and Oxidative Phosphorylation Regulation in Magnetospirillum Gryphiswaldense MSR-1

Author:

Ma Yong1,Guo Fangfang2,Zhang Yunpeng3,Sun Xiuyu1,Wen Tong1,Jiang Wei4

Affiliation:

1. Department of Biology Science and Technology, Baotou Teacher’s College, Baotou 014030, China

2. Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

3. Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China

4. State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China

Abstract

The formation of magnetosomes inside magnetotactic bacteria is a complex process strictly controlled by the intracellular metabolic regulatory system. A series of transcriptional regulators are involved in the biosynthesis of the magnetosome, including OxyR-Like protein, which is indispensable for the maturation of magnetosomes in Magnetospirillum Gryphiswaldense MSR-1. In this study, a new function of the OxyR-Like protein that helps cells resist reactive oxygen species (ROS) was identified. A comparison of expression profile data between wild-type MSR-1 and an oxyR-Like defective mutant demonstrated that seven genes encoding chemotaxis proteins were down-regulated in the latter. On the contrary, the expression levels of numerous genes encoding proteins that are critical for cellular aerobic respiration were up-regulated. Thus, OxyR-Like enhanced the resistance of cells to ROS by increasing their environmental perception and maintaining their oxidative phosphorylation at a reasonable level to avoid the excessive production of endogenous ROS. These results increase our knowledge of the OxyR-Like regulatory network and establish a relationship between the antioxidant metabolic pathway and magnetosome biomineralization in MSR-1.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3