Affiliation:
1. Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People’s Republic of China
Abstract
Titanium (Ti) and its alloy implants are widely used in the field of orthopedics, and osteoporosis is an important reason for implantation failure. This study aimed to establish a quercetin (QTN) controlled release system on the surface of titanium implants and to study its effects
on osteogenesis and osseointegration on the surface of implants. Polyethylenimine (PEI) was first immobilized on a titanium substrate as the base layer, and then, hyaluronic acid/chitosan-quercetin (HA/CS-QTN) multilayer films were assembled on the PEI layer by a self-assembly technique. Fourier
transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements were used to characterize and analyze the samples. The release characteristics of QTN were studied by release assays. The osteogenic ability of the samples was evaluated by experiments
on an osteoporosis rat model and MC3T3-E1 cells. The FTIR, SEM, and contact angle measurements all showed that the PEI substrate layer and HA/CS-QTN multilayer film were successfully immobilized on the titanium matrix. The drug release test showed the successful establishment of a QTN controlled
release system. The in vitro results showed that osteoblasts exhibited higher adhesion, proliferation and differentiation ability on the coated titanium matrix than on the pure titanium surface. In addition, the in vivo results showed that the HA/CS-QTN coating significantly
increased the new bone mass around the implant. By depositing a PEI matrix layer and HA/CS-QTN multilayer films on titanium implants, a controlled release system of QTN was established, which improved implant surface osseointegration under osteoporotic conditions. This study proposes a new
implant therapy strategy for patients with osteoporosis.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献