Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Polyethylene Glycol Complex Nanoparticles Combined with Gemcitabine Presents Improved Safety and Lasting Anti-Tumor Efficacy in a Murine Xenograft Model of Human Aggressive B Cell Lymphoma

Author:

Liu Zhihe1,Wang Shunan1,Guo Wei1,Zhang Dawei2,Yu Haiyang2,Song Wantong2,Tang Zhaohui2,Bai Ou1

Affiliation:

1. Department of Hematology, The First Hospital of Jilin University, Changchun, 130021, China

2. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

Cisplatin (CDDP) is a highly effective anti-tumor drug with a broad spectrum of activity. However, the clinical efficacy of CDDP-containing regimens is yet unsatisfactory due to the severe dose-related toxicity of CDDP. In a previous study, CDDP nanoparticles (L-CDDP) forms a complex as CDDP with poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) with improved safety compared to CDDP. Herein, a murine xenograft model of human aggressive B cell lymphoma (BCL) was established to explore anti-lymphoma efficiency of L-CDDP combined with GEM. BJAB cells represent an aggressive BCL, which were utilized to explore the anti-proliferative effect, cell apoptosis via CCK-8 test and flow cytometry technology, respectively. Toxicity experiment and the maximum tolerated dose (MTD) test were conducted in Kunming mice. Tumor inhibition experiment was conducted at the dose of MTD in SCID beige mice-bearing lymphoma. In this study, the loading capacity and encapsulating efficiency of CDDP in the L-CDDP was 18.3% and 89.7%, respectively, and the hydrodynamic diameter of the prepared L-CDDP was 20.6 nm. The CCK-8 data indicated that the anti-proliferative activity of monodrug groups (GEM, CDDP, L-CDDP) was dose- and time-dependent in BJAB cells. The synergistic effects in anti-lymphoma were detected in these two groups (GEM+CDDP, GEM + L-CDDP). Compared to control group, the proportion of apoptotic cells in experimental groups in BJAB cells was significantly higher at 48 h. Toxicity assays revealed that GEM + L-CDDP regimen had low hematological toxicity, hepatotoxicity, and nephrotoxicity. Tumor inhibition experiment demonstrated that GEM + L-CDDP group exhibited significant tumor-suppressing effects. Moreover, tumors continued to shrink in GEM + L-CDDP group, while these appeared to grow in the GEM + CDDP group. Finally, tumor necrosis was most prominent in the GEM + CDDP and GEM + L-CDDP groups, as assessed by hematoxylin-eosin staining. In conclusion, compared to CDDP, L-CDDP combined with GEM seriously induces BJAB cell apoptosis. Also, GEM + L-CDDP exhibits low hematotoxicity, hepatotoxicity, and nephrotoxicity. Importantly, GEM + L-CDDP presents lasting anti-lymphoma efficacy in a SCID beige mice-bearing lymphoma.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference37 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced nanoscale drug delivery systems for bone cancer therapy;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2023-08

2. Strategies of nanomedicine for targeting the signaling pathways of Colorectal cancer;Journal of Drug Delivery Science and Technology;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3