Near-Infrared Light Enhanced Peroxidase-Like Activity of PEGylated Palladium Nanozyme for Highly Efficient Biofilm Eradication

Author:

Xiang Sijin1,Fan Zhongxiong2,Sun Duo1,Zhu Tianbao1,Ming Jiang1,Chen Xiaolan1

Affiliation:

1. State Key Laboratory for Physical Chemistry of Solid Surfaces, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

2. Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China

Abstract

The overall eradication of biofilm-mode growing bacteria holds significant key to the answer of a series of infection-related health problems. However, the extracellular matrix of bacteria biofilms disables the traditional antimicrobials and, more unfortunately, hampers the development of the anti-infectious alternatives. Therefore, highly effective antimicrobial agents are an urgent need for biofilm-infection control. Herein, a PEGylated palladium nanozyme (Pd-PEG) with peroxidase (POD)-like activity for highly efficient biofilm infection control is reported. Pd-PEG also shows the intrinsic photothermal effect as well as near-infrared (NIR) light-enhanced POD-like activity in the acidic environment, thereby massively destroying the biofilm matrix and killing the adhering bacteria. Importantly, the antimicrobial mechanism of the synergistic treatment based on Pd-PEG+H2O2+NIR combination was disclosed. In vitro and in vivo results illustrated the designed Pd-PEG+H2O2 +NIR treatment reagent possessed outstanding antibacterial and biofilms elimination effects with negligible biotoxicity. This work hopefully facilitates the development of metal-based nanozymes in biofilm related infectious diseases.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3