Design and Stability Improvement of Pectin-Based Red Blood Cell-Mimicking Microcapsules for Oxygen Therapeutics

Author:

Phakousonh Damien1,Wang Yale2,Schlicht Sabrina1,Wiskirchen Sam1,Bos Trevor1,Ren Lixia3,Chen Junhong2,Hua Xiaolin4,Lee Jung1,Krishnan Sasirekha5,Suresh K. Shoma5,Jaisankar Abinaya5,Ramalingam Murugan5,Zhang Wujie1

Affiliation:

1. BioMolecular Engineering Program, Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI 53202, USA

2. Mechanical Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA

3. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

4. Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China

5. Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, TamilNadu, India

Abstract

A pectin-oligochitosan microcapsule system has recently been developed for novel oxygen therapeutic design. To improve the stability of the pectin-oligochitosan microcapsules in physiological conditions, both covalent (glutaraldehyde) and noncovalent (Mn2+ and Ca2+) cross-linkers were tested. The chemistry and morphology of the microcapsules were studied using FTIR and SEM, respectively. Results showed that glutaraldehyde is an effective cross-linker, even at low concentrations and short incubation times, and the glutaraldehyde cross-linking does not negatively impact the morphology of the microcapsules. Moreover, it was confirmed that the hemoglobin could be retained within the microcapsules with a minimal release.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3