Cytotoxicity Study of Cadmium-Selenium Quantum Dots (Cdse QDs) for Destroying the Human HepG2 Liver Cancer Cell

Author:

Rahman Mohammed M.1,Opo Firoz A. D. M.2,Asiri Abdullah M.1

Affiliation:

1. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

2. Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun, 61452, South Korea

Abstract

In this approach, Hepatocellular carcinoma (HCC) is originated from hepatocytes cell, which can spread several parts in the body. It increases the death rate of cancer patients and more common in men rather than female. Patients having large tumor are growing through expensive treatment such as chemotherapy, radiotherapy and surgery. Nano medicine such as nano-dimensional particles as well as quantum dots might be an alternative treatment with greater efficiency in cancer biology field. Modification of surface and chemical properties of cadmium groups quantum dots can easily penetrate into the cancer cell without harming normal tissues. Here, Cadmium-Selenium Quantum Dot nanomaterials (CdSe QDs) have been prepared in solution phase with 0.1 M concentration, which was potentially applied for the destroying of HepG2 cancer cell with 24 hour and 36 hour of incubation. Due to their size, surface properties, lower cost, QDs can easily attached to the cell and able to damage the cells more rapidly in vitro process. For cell death, gene expression and morphological changing analysis were completed MTT, Flow Cytometry, qRT-PCR assay. Finally, the cell deaths were observed by cell shrinkage, rupture of membrane and expression of apoptotic gene (Bcl2, Beta catenin, Bax) were positive comparing untreated HepG2 cell line.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3