Affiliation:
1. Department of Anesthesiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
2. Department of Thoracic Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
3. Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
Abstract
Intestinal barrier injuries are common in uremia, which aggravates uremia. The goal of this study is to learn moreabout how electroacupuncture regulates gastrointestinal function, as well as to identify the importance of microglia in electroacupuncture regulation and the cannabinoid
receptor signaling pathway in controlling the activity of intestinal glial cells. The mice were arbitrarily assigned to four groups: control, CKD, electroacupuncture stimulation, or AM251 (CB1 receptor antagonist). The mice model of uremia was established by adenine gavage. Western blotting
revealed the development of tight junction proteins ZO-1, cannabinoid 1 receptor, glial specific GFAP, occludin, S100 β, claudin-1, and JNK. GFAP and CB1R protein expression and co-localization of the intestinal glial cells were observed by double-labeled fluorescence. The expression
of cannabinoid 1 receptor CB1R in the intestinal glial cells was increased after electroacupuncture. The expression of tight junction protein, GFAP, S100 β, and CB1R protein was up-regulated after electroacupuncture, and the dysfunction of the intestinal barrier in uremia was corrected.
Nevertheless, AM251, a CB1R antagonist, reversed the effect of electroacupuncture. Electroacupuncture can protect the intestinal barrier through the intestinal glial cell CB1R, and the effect is achieved by inhibiting the JNK pathway.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献