Notch3 Mutation Detection in Stroke Patients and Selective Nanoliposome in Stroke Alleviation in a Mouse Model

Author:

Wang Yanxia1,Li Xinmeng1,Liu Ying1,Guo Wenjing1,Chen Jiangpo2,Lu Mengmeng2,Huang Shuchun3,Pang Tieliang2,Chen Jinghong4,Kong Xiangjun1

Affiliation:

1. Central Laboratory of Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China

2. Biotecnovo (Langfang) Medical Lab Co. Ltd., Langfang 065011, Hebei, PR China

3. Department of Internal Medicine-Neurology, 302 Hospital of China Guizhou Aviation Industry Group, Anshun 561000, Guizhou, PR China

4. Department of Clinical Laboratory, Langfang Changzheng Hospital, Langfang 065011, Hebei, PR China

Abstract

This study analyzed the correlation between the Notch3 mutation and stroke by testing an effective nanoparticle-loaded aspirin in stroke therapy. Fifty patients with ischemic stroke were followed for two years, and fifty healthy persons served as the control group. By RT-PCR, this study revealed that the Notch3 mutation existed in ischemic stroke patients who were more likely to have a family history, small vessel lesions, relatively frequent cerebral hemorrhage, and poor long-term prognosis. Liposome-aspirin-chitosan nanoparticle (LACN) was constructed as a nano-composite for stroke treatment. Notch3 Arg170Cys knock-in mice were prepared as a mutant Notch3 mouse model to test the LACN infiltration efficiency and observe the anti-stroke capacity. We found that LACN could better transport aspirin into brain vessels than the Polyethyleneimine (PEI) delivery system. However, in the Notch3 mutation mouse model, cerebral infarction and hemorrhage often occurred after being treated with aspirin. Still, LACN better prolongs the half-life of aspirin, rescues the pathological alteration of stroke in the brain, and reduces inflammatory reaction and oxidative stress response. In conclusion, the Notch3 mutation is closely related to stroke occurrence, and LACN may be a better choice for stroke therapy in the future.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3