Low Concentrations of Zinc Oxide Nanoparticles Cause Severe Cytotoxicity Through Increased Intracellular Reactive Oxygen Species

Author:

Xie Shichen1,Zhu Jingyao1,Yang Dicheng2,Xu Yan2,Zhu Jun2,He Dannong1

Affiliation:

1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

2. National Engineering Research Center for Nanotechnology, Shanghai 200241, PR China

Abstract

With wide application of Zinc oxide (ZnO) nanoparticles, their biological toxicity has received more and more attention in recent years. In this research, two ZnO dispersions with different particle sizes, small size Zinc oxide (S-ZnO) and big size Zinc oxide (B-ZnO), were prepared using polycarboxylic acid as dispersant. We found that the S-ZnO nanoparticles showed stronger toxicity on Human Pulmonary Alveolar Epithelial Cells (HPAEpiC) under same concentration. Only 9 ppm S-ZnO could decrease HPAEpiC viability to about 50%, which means that, a small amount of well-dispersed ZnO nanoparticles in industrial production process may cause serious damage to the human body through oral inhalation. Focusing on mechanism for cytotoxicity, ZnO nanoparticles promoted generation and accumulation of Reactive Oxygen Species (ROS) in mitochondria via inhibiting Superoxide Dismutase (SOD) enzyme activity and reducing Glutathione (GSH) content. ROS in turn opened the mitochondrial Ca2+ pathway and lowered the Mitochondrial Membrane Potentials (MMP), leading to cell death. To simulate the lung environment in vitro, mixed dipalmitoyl phosphatidylcholine (DPPC) and ZnO nanoparticles (1:1) were incubated for 72 hours and then cytotoxicity was evaluated on HPAEpiC. Results showed that the cell viability was significantly increased, which proved that the DPPC effectively inhibited the toxicity of ZnO nanoparticles.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3