Affiliation:
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
2. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
3. School of Pharmacy, Heilongjiang University of Chinese Medicine, Xiangfang District, Harbin 150040, China
Abstract
Honokiol-loaded nanoparticles (HK-loaded NPs) exhibit potential antitumor activity; however, the factors affecting their antitumor efficacy are still unclear and need to be explored. This research was aimed to systematically estimate the influence of feed weight ratio (FWR) and nanocarrier
structure on antitumor activity. Accordingly, three types of ethylene glycol derivatives, including linear poly(ethylene glycol) with molar mass of 2000 (PEG45), first and second generation oligo(ethylene glycol) dendrons (G1 and G2) were used as nanocarriers, and a series of HK-loaded
NPs with different FWR were prepared successfully using the evaporation-ultrasonication method. These NPs showed similar stability but demonstrated differences with respect to particle size, morphology, cumulative profile, and antitumor efficacy. The influence of the FWR was studied using
G1 dendrons as nanocarriers; the results indicated that the particle size and morphology of G1 NPs were significantly affected, and G1 NPs (8/1), with the FWR of 8/1 for HK versus G1 dendron, exhibited the highest antitumor activity among all G1 NPs. Furthermore, the influence of nanocarrier
structure was investigated at the FWR of 4/1; the findings revealed reduction in the particle diameter from 280 nm to 109 nm and change in morphology from sphere to flower-like structure with an increase in the branch degree from linear to dendron. Moreover, G2 NPs (4/1), with the FWR of 4/1
for HK versus G2 dendron, carrying the highest branch degree exhibited the greatest antitumor efficacy among all. These results are suggestive of influence of particle size and morphology on antitumor efficacy of HK-loaded NPs. Conclusively, this study demonstrated nanocarrier structure and
the FWR significantly affect the antitumor efficacy of NPs, which should be optimized for designing nanoscale delivery systems.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献