Comparative Toxicity, Biodistribution and Excretion of Ultra-Small Gold Nanoclusters with Different Emission Wavelengths

Author:

Li Na1,Chen Lina1,Zeng Chujie1,Yang Huanggen1,He Silian1,Wei Qingmin1

Affiliation:

1. Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China

Abstract

The exponentially increased use of gold nanoclusters in diagnosis and treatment has raised serious concern about their potential threat to living organisms. However, the mechanisms of toxicity of gold nanoclusters in vitro and in vivo remain poorly understood. In this work, comparative toxicity studies, including biodistribution and excretion, were carried out with mildly and chemically synthesized ultra-small L-histidine-protected and bovine serum albumin (BSA)-protected gold nanoclusters in an all-aqueous process. These nanoclusters did not induce a remarkable impact on cell viability, even at relatively high concentrations (100 μg/mL). The haemolytic assay demonstrated that the gold nanoclusters could not destroy blood cell at 600 μg/mL. After intravenous injection with mice, the biocompatibility, biodistribution, and excretion were determined. Quantitative analysis results showed that accumulation varied in the liver, spleen, kidney, and lung, though primarily in the liver and spleen. They were excreted in urine and faeces, but mainly excreted through urine. In our study, no obvious abnormalities were found in body weight, behavioral changes, blood and serum biochemical indicators, and histopathology. These findings suggested that both gold nanoclusters showed similar effects in vivo and were safe and biocompatible, laying the foundation for safe biomedical application in the future.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3