Facile Synthesis of Iron Oxide Nanozymes for Synergistically Colorimetric and Magnetic Resonance Detection Strategy

Author:

Huang Shihui1,Jiang Shuqi2,Liu Hong1,Cai Jiali1,Chen Gengjia1,Xu Junyao3,Kai Dan4,Bai Pengli5,Zhou Ruiping6,Wang Zhiyong1

Affiliation:

1. School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China

2. Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, P. R. China

3. Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China

4. Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore 138634 Singapore

5. CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R.China

6. Department of Stomatology, Shenzhen Yantian District People’s Hospital, Shenzhen 518081, P. R. China

Abstract

Iron oxide nanomaterials with mimic enzymes activity have been paid more attention in the clinical diagnosis field. The modified surface molecules would influence the catalytic activity of nanozyme, which is worth studying. Furthermore, the traditional detection strategy is based on colorimetric change of substrates, however, the optical signal is easy to be interfered in complex biological applications. In our research, an efficient and facile preparation strategy was developed to obtain functional artificial nanozymes. Herein, three kinds of surfactants, including citrate acid, poly(ethylene glycol) bis (carboxymethyl) ether and tannic acid have been applied to modify these nanomaterials that showed uniform size, high soluble dispersity and stability. Furthermore, these nanozymes exhibited different peroxidase-like activity to catalyze the hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine. More importantly, magnetic relaxation effect of iron oxide nanozymes was found to be changed during the catalytic reaction. In addition, the relationship between the magnetic signal of nanozymes and the substrate concentration showed a good linear dependence. Combined with the natural enzymes, the magnetic detection of iron oxide nanozymes also exhibited excellent substrate specificity. On these bases, a dual-function specific assay was constructed and further used for glucose detection. In conclusion, this study demonstrated an efficient iron oxide nanozymes preparation method and constructed a new synergistically colorimetric-magnetic diagnosis strategy.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3