The Effect of Nano-Silica Gel on Biological Activity of Osteoblasts and Expression of Insulin-Like and Growth Factor-2

Author:

Zhou Xiaoling1,Yang Ting2,Li Xin3,Wei Tingting3,Xu Ying3,Mao Yunyuan4,Lei Chen3

Affiliation:

1. Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China

2. Ningxia Medical University, Yinchuan, Ningxia, 750004, China

3. General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China

4. Department of Geriatrics and Special Needs, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China

Abstract

This study assessed the effect nano-silica gel material on bioactivity of osteoblasts and expression of IGF-2. Methods: Silica gel nanoparticles (Nanjing Kike Company) were divided according to their concentrations as follows; 0 μg/mL a control group with cells without nanoparticle treatment, 25 μg/mL as group 1, 50 μg/mL as group 2, and 100 μg/mL as group 3. The transmission electron microscope was used to measure morphology, while particle size analyzer was used to measure particle size, and potential analyzer measured Zeta potential, and MTT measured proliferation.Moreover, ALP kit was used to measure ALP activity, and Alizarin red staining measured formation of wild flower nodules, while RT-PCR was used to measure expression of IGF-2. Results: The shape of silica gel nanoparticles was spherical, with uniform particle size distribution, and particle size was between 50–800 nm. The average particle size was 383 nm, and Zeta potential was −12.3. The growth rate of control group and group 1 was relatively close (t = 0.95, P = 0.37), and growth rate of groups 2 and 3 was higher than control (group t2 = 5.63, P < 0.05, group t3 = 10.38, P < 0.05). The value-added rate for group 3 was higher than group 2 (t = 4.41, P < 0.05). Group 1 had higher activity than control group (t = 10.29, P < 0.05) and lower activity than group 3 (t = 9.85, P < 0.05) which had higher activity than group 2 (t = 4.16, P < 0.05). Groups 1, 2, and 3 induced the growth of osteoblasts, promoted calcium salt deposition, and produced red mineralized nodules where the cells converged. The formation of mineralized nodules obviously depended on concentration of silica nanoparticles. Group 1 had higher IGF-2 expression than control (t = 19.99, P < 0.05) and lower level than group 2 (t = 16.69, P < 0.05). Silica gel nanoparticles promoted MC3T3-E1 cell proliferation and differentiation. The mechanism of action may be that, silica gel nanoparticles accelerate the growth of ALP activity and osteoblast extracellular matrix mineralization by promoting the level of IGF-2. The production of chemical nodules accelerates the proliferation and differentiation of osteoblasts.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3