Induction of Bone Remodeling by Raloxifene-Doped Iron Oxide Functionalized with Hydroxyapatite to Accelerate Fracture Healing

Author:

Wang Gengqi1,Xu Wenqiang1,Zhang Junjie1,Tang Tian1,Chen Jing2,Fan Changchun3

Affiliation:

1. Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine & Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China

2. Department of Gynaecology and Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, China

3. Department of Orthopedics, Heze Chenhe Hospital, Heze 274000, China

Abstract

Repairing fractures in the presence of infection is a major challenge that is currently declining using nanotechnology. By producing iron oxide nanoparticles (NPs) containing hydroxyapatite and Raloxifene (R-IONPs-HA), this study tries to target drug delivery, control infection and promotion of the cells proliferation/differentiation to repair damaged tissue. After the production of R-IONPs-HA through co-precipitation, the physicochemical features of the NPs were considered by SEM, TEM, DLS and XRD methods, and the possibility of drug release. The effect of R-IONPs-HA on MC3T3-E1 cell proliferation/differentiation was determined by CCK-assay and microscopic observations. Also, Gram-negative and -positive bacteria were applied to evaluate the antibacterial activity. Finally, cell differentiation biomarkers like an ALP, OCN, and RUNX-2 genes were examined by real time (RT)-PCR. The results showed that R-IONPs-HA was spherical with dimensions of 98.1 ± 1.17 nm. In addition, the results of Zeta and XRD confirmed the loading HA and R on IONPs. Also, the release rate of R and HA in 64 h with pH 6 reached 61.4 and 30.4%, respectively. The anti-bacterial activity of R-IONPs-HA on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria showed a significant reduction in infection. Also, MC3T3-E1 cells showed greater proliferation and differentiation by R-IONPs-HA compared to other groups. Increased expression of ossification genes such as OCN, and RUNX-2 confirmed this claim. Finally, R-IONPs-HA with good biocompatibility, antibacterial activity and ossification induction has great potential to repair bone fractures and prevent infection.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3