Author:
Ding Guoping,Lu Zhongyin,Dai Zilun
Abstract
Carbon-Fiber-Reinforced Plastic (CFRP) has several advantages, such as light weight, high strength, small thermal expansion coefficient and high damping ratio. The CFRP-metal hybrid drive shaft is taken as the study object to analyze its vibration characteristics. The laminate mode
of the CFRP shaft tube is designed as [±15°3/ ±45° / ± 88° / ±88° / ±45° / ± 15°3 /88°]s, and the equivalent elastic modulus, equivalent shear modulus and modal damping of
the CFRP shaft tube can be obtained by theoretical calculation. The change rule of the torsional vibration angle for the CFRP shaft tube is obtained by the finite-element analysis. Furthermore, the same bending vibration and torsional vibration are measured for the CFRP-metal hybrid drive
shaft and the metal drive shaft using an acceleration sensor. The measured first-order bending resonance speed of the hybrid drive shaft is 1094.64 r/min, and its resonance amplitude is 0.118 mm. The measured first-order bending resonance speed of the metal drive shaft is 1,298.2 r/min, and
its resonance amplitude is 0.21 mm. The maximum torsional vibration stress of the CFRP shaft tube is 330.0733 Mpa, which is far higher than the maximum torsional vibration stress (125.99 Mpa) of the metal drive shaft. It can be seen that the CFRP drive shaft has higher resistance to bending,
torsion and vibration than the metal drive shaft.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献