Performance and Mechanism for Fluoride Removal in Groundwater with Calcium Modified Biochar from Peanut Shell

Author:

Zhang Rui-Ling,Xu Jing,Gao Lei,Wang Zhe,Wang Bo,Qin Song-Yan

Abstract

Fluoride in groundwater poses a great risk to humans. Biochar is an effective and environmental-friendly adsorbent for fluoride removal. The objectives of this study were to develop a calcium modified biochar derived from peanut shell and to study its mechanism in the adsorptive removal of fluoride. For these purposes, biochar was prepared using three different techniques. No. 1 biochar was prepared by direct carbonization, No. 2 biochar was modifiied with 30% calcium chloride solution before carbonization, and No. 3 biochar was modified with 30% calcium chloride following carbonization. The No. 2 biochar clearly showed the highest percentage fluoride removal (92.1%) and the fluoride removal efficiency improved by 30%–60% compared with other techniques. The adsorption isotherms and kinetics of the biochar modified with calcium were best described by the Langmuir and pseudo-second-order model, respectively. Based on the calcium content from the energy spectrum, calcium was well loaded onto the biochar. Calcium detached experiments indicated the loaded calcium was the main method for fluoride removal of No. 2 biochar, the adsorption mechanism was clearly demonstrated through the changes of morphology and group during adsorption. Fourier transform infrared spectroscopic (FTIR) analyses indicated the highest fluoride removal efficiency of No. 2 biochar was due to cleavage and structural change in many functional groups. But only C–H was involved in No. 3 biochar fluoride removal process. The good performance of No. 2 biochar for de-fluoridation was due to the calcium stably loaded onto the biochar and many of the changed functional groups there. Biochar modified with calcium before carbonization is an efficient, low-cost, safe technique for de-fluoridation.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3