Phase Transition-Induced Modulation of Exchange Bias in Fe/BiFeO3 Bilayers

Author:

Wang Liyan,Li Zongguo,Wang Cong,Gong Xue,Wang Changzheng

Abstract

Many of researches indicate that epitaxial BiFeO3 (BFO) films deposited on LaAlO3 (LAO) substrate undergo strain-driven phase transition from a tetragonal-like phase (T-BFO) to a rhombohedral-like phase (R-BFO), and a mixed phase (M-BFO) that T-BFO coexists with R-BFO forms in the phase transition process. It is necessary to explore how BFO phase transition affects the exchange bias in ferromagnet (FM)/BFO bilayers. In our studies, aforementioned BFO phase transition is accomplished by varying BFO films thickness. Using 5 nm-thick Fe as ferromagnetic layer deposited on 9–354 nm-thick BFO as antiferromagnetic layer, the exchange bias in Fe/BFO bilayers exhibits that Fe/M-BFO bilayers shows smaller exchange bias than Fe/T-BFO and Fe/R-BFO bilayers. We ascribed the effect of the BFO phase transition on the exchange bias to the domain walls caused by the exchange interaction between T-BFO and R-BFO across their boundaries. Additionally, for the same reason, the coercivity also exhibits the same variation trend as the exchange bias does. Our studies will help to promote the application of controlling the ferromagnetic magnetization by the electric field.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3