In Methanolic Solvent Synthesis of New MnII, CoII, NiII and CuII Schiff Base of Aromatic β Amino Acids: Spectroscopic, Thermal, Molecular Docking and Antimicrobial Studies

Author:

Al-Wasidi Asma S.,Al-Jafshar Nawal M.,Al-Anazi Amal M.,Refat Moamen S.,El-Metwaly Nashwa M.,Ibrahim H.K.,El-Fattah Wessam Abd,Naglah Ahmed M.,Al-Omar Mohamed A.,Kalmouch Atef

Abstract

In this article, four new Schiff base complexes of Mn(II), Co(II), Ni(II) and Cu(II) complexes have been synthesized with two different compositions as [M(L)2Cl2] · nH2O and [M(L)2(H2O)2]Cl2 · nH2O [where L1 = benzoin-o-amino benzoic acid (aromatic β amino acid) and L2 = benzoin bromo-o-amino benzoic acid (aromatic β amino acid); M = MnII, CoII, NiII and CuII; n = 1, 2 and 4]. These Schiff base complexes were discussed by many tool of analyses like elemental analysis, magnetic susceptibility, molar conductance, mass spectra, infrared spectra "IR," proton nuclear magnetic resonance "1H-NMR," electronic spectral and thermogravimetric analysis (TG/DTG). These complexes have an electrolytic nature within range of 78–174 Ω1 cm–1 mol –1 based on conductance measurements. Magnetic moment and electronic spectral results deduced that the geometry of Mn2+, Co2+ and Ni2+ and Cu2+ complexes has an octahedral configuration. The number of coordinated and uncoordinated water molecules for the synthesized complexes were calculated based on the thermal analysis technique. The kinetic thermodynamic data were estimated by using commonly integral equations of Horowitz-Metzger (HM) and Coats-Redfern (CR). In vitro the antimicrobial activity of both free L1 and L2 ligands in comparable with their metal complexes were evaluated. This study was strengthen by molecular docking against three protein receptors, which attributing to selected organisms already used in vitro study.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3