In SituPhotoelectron Spectroscopy and Theoretical Calculation Study of Thermally Evaporated Copper Naphthalocyanine

Author:

Lee Hyunbok,Lee Younjoo,Kang Donghee,Yi Yeonjin,Cho Sang Wan

Abstract

Recently, organic photovoltaics (OPVs) have attracted attention as a next-generation energy source as their power conversion efficiency (PCE) has significantly improved. To increase the PCE of OPVs further, a fundamental understanding of material properties of a new organic semiconductor is highly important. Copper naphthalocyanine (CuNc) is composed of macrocyclic ligands with extended benzene rings of copper phthalocyanine (CuPc). Thus, it can be considered as a potential candidate for an efficient p-type organic semiconductor, similar to a well-known conventional p-type organic semiconductor CuPc. In this study, we investigated the electronic structure of thermally evaporated CuNc on indium tin oxide (ITO) wit in situ ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) and density functional theory (DFT) calculations. DFT calculations predict that CuNc has a lower ionization energy (IE) and band gap than CuPc. However, the IE measured by UPS and the band gap measured by UV-vis absorption of the deposited film were much higher than CuPc. Derived from the measured UPS, XPS spectra and DFT calculation results, we concluded that CuNc could be decomposed with thermal evaporation in a vacuum and the pyrrole-based material might be deposited on ITO. The increased IE and band gap were attributed to the disappearance of the highest occupied molecular orbital originating from the macrocyclic ligands with D4h symmetry. Therefore, the thermal evaporation method would not be a suitable method to obtain the CuNc film for device application, and the alternative solution process at low temperature would be more adequate.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3