Long-term monitoring of SF6 decomposition gases and water molecules using TiO2-doped SnSe monolayer for generator circuit breakers

Author:

He Rufei1,Cheng Li2,Huang Xiaofeng1,Xu Hao1,Zhang Xiaojing2,Zhang Xiaobo3

Affiliation:

1. China Southern Power Grid Energy Storage Co., Ltd., Yunnan, 663099, China

2. Xi’an XD Switchgear Electric Co., Ltd., Xian, 710075, China

3. State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China

Abstract

In generator circuit breakers, monitoring the decomposition of Sulfur Hexafluoride (SF6) gas is a primary method to determine insulation and fault conditions. The presence of SF6 combined with H2O impurities also significantly impacts the degradation of equipment insulation. However, there is a lack of research on the simultaneous monitoring of both SF6 decomposition and H2O. To improve the system’s rapid recoverability, recyclability, and long-term usability, a SnSe monolayer doped with TiO2 nanoparticles (SnSe–TiO2) has been proposed as an SF6 gas decomposer detection sensor with humidity detection capabilities. The SnSe–TiO2 monolayer significantly enhances the conductivity and increases its adsorption energy for H2O (73.2%), H2S (13.54%), HF (59.70%), SO2 (96.33%), and SOF2 (52.04%). Furthermore, this material can be utilized for long-term cyclic gas monitoring as the SnSe–TiO2 monolayer is physically adsorbed to these gases and can be rapidly desorbed. This study establishes a theoretical foundation for the future advancement of gas detection sensors for insulating gases in circuit breakers.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3