Innovative material applications in clothing design research

Author:

Zhou Yueding1,Zhu Hongfeng2,Chao Yingna3

Affiliation:

1. College of Art and Design, Konkuk University, Seoul, 05029, Korea

2. Department of Fine Arts and Design, Hunan Institute of Science and Technology, Yueyang, 414000, Hunan, China

3. College of Art Design, Hunan Vocational College for Nationalities, Yueyang, 414000, Hunan, China

Abstract

With the improvement of living standards, there is a growing demand for clothing that offers both comfort and functionality. Nanomaterials have emerged as a hot topic in clothing design due to their unique structure and performance characteristics. In this study, we develop a composite nanofabric with exceptional water resistance and breathability using polyurethane (PU), fluorinated polyurethane (FPU), and polyvinyl butyral (PVB), namely PU-FPU-PVB composite nanofabric. The mechanical properties, wettability, waterproofing, and thermal comfort are evaluated. The results demonstrate that optimizing the TPU and PVB contents is crucial for obtaining PU-FPU-PVB composite nanofabrics with exceptional performance. Low TPU concentrations fail to provide sufficient viscosity for even dispersion within the hot melt adhesive mesh film, while higher concentrations enable better dispersion due to increased viscosity provided by TPU. Additionally, increasing the content of PVB from 0 wt% to 100 wt% led to decreased moisture permeability from 10.5 kg ·m−2 · d−1 to 3.0 kg ·m−2 · d−1 during thermal comfort testing. Its permeability dropped from 22.5 mm/s to 2.8 mm/s under these conditions. These findings indicate that our designed composite nanofabric exhibits excellent thermal comfort when incorporating appropriate levels of PVB into its composition, making it an ideal high-performance material for waterproof and breathable fabrics with superior comfort and functionality in clothing design applications. In conclusion, PU-FPU-PVB composite nanofabrics hold great potential for fostering the innovative advancement of nanomaterials in the realm of clothing design.

Publisher

American Scientific Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3