Author:
Afarideh Faezeh,Ramasht Mohammad Hossein,Mortyn Graham
Abstract
Tehran is one of the most polluted cities in the world with 48 days of air pollution exceeding the admissible threshold (AQI > 150) for 3 months of the 15 years studied. This period coincides with the time when Tehran’s inversion reaches its maximum stability. The purpose of this study was to determine the height of air pollution in Tehran in the days when pollution exceeds the permissible limit. Continuing to study the pressure and temperature conditions of these days, we then considered the geographical and topographic conditions, and finally identified the best of these cells for potential theoretical air turbulence. The results of this study, based on the Harmonic Analysis method and based on Tehran temperature and pressure data over a 15-year period (2003–2017), show that the highest elevation of Tehran inversion does not exceed 1800 m on polluted days. Only within 6 days of those beyond the admissible threshold, temperature and pressure cells with the highest Newtonian mass are formed. The center of these cells formed with a compressive difference of 32 mg in November, 7 mg in January, 11 mg in December, and temperature difference of 1.1° in November, 4.4° in January, and 1.9° in December. Generally, we considered the formed cells by the temperature and pressure difference and the gradient between them, as well as the difference in height between the cells and their location. This information, combined with the local winds causing the differences in temperature and pressure, allows us to elucidate conditions for creating air turbulence in Tehran and mitigating the amount and degree of air pollution.
Publisher
Charles University in Prague, Karolinum Press
Subject
General Earth and Planetary Sciences,Geography, Planning and Development
Reference27 articles.
1. Long-Term Inhalable Particles and Other Air Pollutants Related to Mortality in Nonsmokers
2. Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study)
3. Bidokhty, A. A., Tajedin, B. H. (1998): Urban mix layer and air pollution. Geography Research Quartery 20(3), 41-62.
4. Bityukova, V. R., Kasimov, N. S. (2012): Atmospheric pollution of Russia's cities: Assessment of emissions and immissions based on statistical data. Geofizika 29(1), 53-67, https://hrcak.srce.hr/84995.
5. Air pollution characteristics associated with mesoscale atmospheric patterns in northwest continental Europe
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献