TSG-6 Induces Apoptosis of Human Hypertrophic Scar Fibroblasts via Activation of the Fas/FasL Signalling Pathway

Author:

Li X.-Y.,Li T.,Li Xiao-Jing,Wang J.-N.,Chen Z.

Abstract

Tumour necrosis factor-stimulated gene 6 (TSG6) is a protective inflammatory reaction gene which is upregulated by inflammatory processes. Recent studies suggest that TSG-6 exhibits anti-scarring effects. However, the mechanism of TSG-6 action in the scar formation remains poorly understood. We investigated whether TSG-6 affects growth of the human hypertrophic scar fibroblasts (HSFs) via Fas/FasL signalling pathway. Cultured HSFs were transfected with a vector carrying the TSG6 gene (pLVX-Puro-TSG-6) or with a vector not containing the TSG6 gene (pLVX-Puro). Untransfected HSFs served as a control group to both transfected HSFs. The expressions level of TSG-6 was up-regulated in the pLVX-Puro-TSG-6 group at the protein and mRNA level. MTT and flow cytometry were used to assess the effect of TSG-6 on the growth and apoptotic status of HSFs. Finally, qRT-PCR and western blot were used to measure the expression levels of Fas, FasL, FADD, caspase-3 and caspase-8 in each group. The apoptosis rate was significantly enhanced and the growth rate reduced in the HSFs transfected with the TSG6 gene vector. The expression levels of Fas, FasL, FADD, caspase-3 and caspase- 8 were significantly raised in the TSG-6 overexpressing HSFs. It is concluded that increased expression of TSG-6 may induce apoptosis of human hypertrophic scar fibroblasts via activation of the Fas/FasL signalling pathway.

Funder

Scientific Research Foundation of Education Department of Anhui Province of China

Publisher

Charles University in Prague, Karolinum Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3