Cardiac Enlargement in the Chick Embryo Induced by Hypothermic Incubation Is Due to a Combination of Hyperplasia and Hypertrophy of Cardiomyocytes

Author:

Skuhrová K.,Kvasilová A.,Svatůňková J.,Sedmera David

Abstract

Hypothermic incubation of chicken eggs leads to smaller embryos with enlarged hearts, originally described as hypertrophic. Over the years, however, accumulated evidence suggested that hyperplasia, rather than hypertrophy, is the predominant mechanism of cardiac growth during the prenatal period. We have thus set to re-evaluate the hypothermia model to precise the exact cellular mechanism behind cardiac enlargement. Fertilized chicken eggs were incubated at either 37.5 °C (normothermia) or 33.5 °C from embryonic day (ED) 13 onward (hypothermia). Sampling was performed at ED17, at which point wet embryo and heart weight were recorded, and the hearts were submitted to histological examination. In agreement with previous results, the hypothermic embryos were 29% smaller and had hearts 18% larger, translating into a 67% increase in the heart to body weight ratio (P < 0.05 for all parameters). The cell size was essentially the same between control and hypothermic hearts in all regions analysed. Likewise, there was no significant relationship between the cell size and heart weight; however, in the hypothermic hearts, there was a trend showing positive correlation between cell sizes in different cardiac regions and heart weight. Proliferation rate, determined on the basis of anti-phosphohistone H3 immunofluorescence, showed an overall increase in the hypothermic group, reaching statistical significance (P = 0.02, t-test) in the right ventricle. The proliferation rate was similar among different regions of the same heart. However, the correlation between the proliferation rate and heart weight was only small (r2 = 0.007 and r2 = 0.234 for the normothermic and hypothermic group, respectively). We thus conclude that hyperplasia is the predominant response mechanism in this volume-overload model; mechanistically, decreased heart rate at lower temperature increases the end-diastolic and stroke volume, minimizing the drop in cardiac output through the Frank- Starling mechanism.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Grantová Agentura České Republiky

Grantová Agentura, Univerzita Karlova

Akademie Věd České Republiky

Publisher

Charles University in Prague, Karolinum Press

Subject

Cell Biology,Developmental Biology,Genetics,Molecular Biology,General Medicine,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrical remodeling of atrioventricular junction: a study on retrogradely perfused chick embryonic heart;American Journal of Physiology-Heart and Circulatory Physiology;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3