Study of Aberrant Modifications in Peptides as a Test Bench to Investigate the Immunological Response to Non-Enzymatic Glycation

Author:

Nuti F.,Gallo A.,Real-Fernandez F.,Rentier C.,Rossi G.,Piarulli F.,Traldi P.,Carganico S.,Rovero P.,Lapolla Annunziata,Papini Anna Maria

Abstract

A side effect of diabetes is formation of glycated proteins and, from them, production of advanced early glycation end products that could determine aberrant immune responses at the systemic level. We investigated a relevant aberrant post-translational modification (PTM) in diabetes based on synthetic peptides modified on the lysine side chain residues with 1-deoxyfructopyranosyl moiety as a possible modification related to glycation. The PTM peptides were used as molecular probes for detection of possible specific autoantibodies developed by diabetic patients. The PDC-E2(167-186) sequence from the pyruvate dehydrogenase complex was selected and tested as a candidate peptide for antibody detection. The structure-based designed type I’ β-turn CSF114 peptide was also used as a synthetic scaffold. Twenty-seven consecutive type 1 diabetic patients and 29 healthy controls were recruited for the study. In principle, the ‘chemical reverse approach’, based on the use of patient sera to screen the synthetic modified peptides, leads to the identification of specific probes able to characterize highly specific autoantibodies as disease biomarkers of autoimmune disorders. Quite surprisingly, both peptides modified with the (1-deoxyfructosyl)-lysine did not lead to significant results. Both IgG and IgM differences between the two populations were not significant. These data can be rationalized considering that i) IgGs in diabetic subjects exhibit a high degree of glycation, leading to decreased functionality; ii) IgGs in diabetic subjects exhibit a privileged response vs proteins containing advanced glycation products (e.g., methylglyoxal, glyoxal, glucosone, hydroimidazolone, dihydroxyimidazolidine) and only a minor one with respect to (1-deoxyfructosyl)-lysine.

Funder

Ente Cassa di Risparmio di Firenze

Publisher

Charles University in Prague, Karolinum Press

Subject

Cell Biology,Developmental Biology,Genetics,Molecular Biology,General Medicine,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3