The effect of underground drainage on peat meadows and inactivation of the drainage in an attempt to restore these meadows, which failed as it reduced the ability of soils to retain water

Author:

Oppong Jimmy C.ORCID,Kešner Michal,Macháčková Jana,Kučera Jiří,Frouz JanORCID

Abstract

Drainage is often used to increase agriculture production, but it has adverse effects on biodiversity and water retention. Here, the effect of subsurface pipe drainage on peat meadows near Senotín (Czechia), which were drained from the mid-1980s to 1990s, was studied. Attempts were made to restore the peat meadows by damming drainage pipes using clay-filled trenches in 1996. In this case study, the effect on the depth of the water table, soil water retention, infiltration and soil temperature were recorded. Measurements of the original peat meadow (undrained site), drained meadow (drained site) and restored meadow (restored site) before restoration and two decades after restoration were recorded. The water table in undrained areas was higher than at drained and restored sites, indicating that drainage had lasting effect on drained and restored sites. Infiltration was lowest at the undrained site, greater at the drained site, and highest at the restored sites. Field water capacity was lowest at the restored site, greater at the drained site and highest at the undrained site. Soil water content at maximum saturation was lowest at the restored site, greater at the drained site and highest at the undrained site. Soil temperature was highest at the restored site with no significant difference between the undrained and drained sites. Soil moisture levels were highest at the undrained site and lowest at the drained site. In addition, the undrained and restored sites did not differ significantly in soil moisture content. In conclusion, restoration did not have a significant effect on the level of the water table, initiation of peat formation or ability of soil to hold water.

Publisher

Charles University in Prague, Karolinum Press

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3