Domination of Filamentous Anoxygenic Phototrophic Bacteria and Prediction of Metabolic Pathways in Microbial Mats from the Hot Springs of Al Aridhah

Author:

Yasir Muhammad,Qureshi A. K.,Srinivasan S.,Ullah R.,Bibi F.,Rehan M.,Khan S. B.,Azhar E. I.

Abstract

Microbial mats in hot springs form a dynamic ecosystem and support the growth of diverse communities with broad-ranging metabolic capacity. In this study, we used 16S rRNA gene amplicon sequencing to analyse microbial communities in mat samples from two hot springs in Al Aridhah, Saudi Arabia. Putative metabolic pathways of the microbial communities were identified using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). Filamentous anoxygenic phototrophic bacteria associated with phylum Chloroflexi were abundant (> 50 %) in both hot springs at 48 °C. Chloroflexi were mainly represented by taxa Chloroflexus followed by Roseiflexus. Cyanobacteria of genus Arthrospira constituted 3.4 % of microbial mats. Heterotrophic microorganisms were mainly represented by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Archaea were detected at a lower relative abundance (< 1 %). Metabolic pathways associated with membrane transport, carbon fixation, methane metabolism, amino acid biosynthesis, and degradation of aromatic compounds were commonly found in microbial mats of both hot springs. In addition, pathways for production of secondary metabolites and antimicrobial compounds were predicted to be present in microbial mats. In conclusion, microbial communities in the hot springs of Al Aridhah were composed of diverse bacteria, with taxa of Chloroflexus being dominant.

Funder

King Abdulaziz City for Science and Technology

Publisher

Charles University in Prague, Karolinum Press

Subject

Cell Biology,Developmental Biology,Genetics,Molecular Biology,General Medicine,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3