Docosahexaenoic Acid Reverses Epithelial-Mesenchymal Transition and Drug Resistance by Impairing the PI3K/AKT/Nrf2/GPX4 Signalling Pathway in Docetaxel-Resistant PC3 Prostate Cancer Cells

Author:

Shao Z. C.,Zhu B. H.,Huang A. F.,Su M. Q.,An L. J.,Wu Z. P.,Jiang Y. J.,Guo H.,Han X.-Q.,Liu Chi-Ming

Abstract

Drug resistance is a serious problem in cancer therapy. Growing evidence has shown that docosahexaenoic acid has anti-inflammatory and chemopreventive abilities. Studies have shown that autophagy inhibition and ferroptosis are promising therapeutic strategies for overcoming multidrug resistance. This study was aimed to examine whether docosahexaenoic acid (DHA) could reverse docetaxel resistance in prostate cancer cells. Cell survival was examined by MTT and colony formation. Protein expression was determined by Western blot. Reactive oxygen species (ROS) production was measured by flow cytometry. DHA displayed anti-cancer effects on proliferation, colony formation, migration, apoptosis, autophagy and epithelial mesenchymal transition. Glutathione-S-transferase π is an enzyme that plays an important role in drug resistance. DHA inhibited GSTπ protein expression and induced cytoprotective autophagy by regulating the PI3K/AKT signalling pathway in PC3R cells. DHA combined with PI3K inhibitor (LY294002) enhanced apoptosis by alleviating the expression of LC3B, (pro-) caspase-3 and (uncleaved) PARP. DHA induced ferroptosis by attenuating the expression of glutathione peroxidase 4 (GPX4) and nuclear erythroid 2-related factor 2 (Nrf2). DHA-treated PC3R cells produced ROS. The ROS and cytotoxicity were reversed by treatment with ferrostatin-1. DHA combined with docetaxel inhibited EMT by regulating the expression of E-cadhein and N-cadherin. In summary, DHA reversed drug resistance and induced cytoprotective autophagy and ferroptosis by regulating the PI3K/AKT/Nrf2/GPX4 signalling pathway in PC3R cells. We propose that DHA could be developed as a chemosensitizer and that the PI3K/AKT/Nrf2/GPX4 signalling pathway might be a promising therapeutic target for overcoming cancer drug resistance.

Publisher

Charles University in Prague, Karolinum Press

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3