SYNTHESIS AND OPTICAL PROPERTIES OF Ni-DOPED ZnO GROWN BY ELECTROCHEMICAL DEPOSITION

Author:

Yanushkevich K. O.1,Chubenko E. B.1,Bondarenko V. P.1

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

Abstract

This paper is targeted at studying the patterns of deposition by electrochemical method of Ni-doped ZnO films, including registering and analyzing their photoluminescence and Raman scattering spectra. We have studied the electrochemical deposition of nickel-doped zinc oxide films on single-crystal silicon substrates from aqueous solutions of zinc and nickel nitrates. The deposition was conducted from aqua solutions of Zn and Ni nitrates in a standard double-electrode electrochemical cell in galvanostatic mode with the current density from 5 to 20 mA/cm2 and deposition time from 5 to 30 min. The Raman scattering on nickel-doped zinc oxide films was examined via laser Raman spectrometer SOL Instruments Confotec NR500. The analysis of Raman spectra showed that an increase of cathodic current density deposition leads to an enhanced concentration of a doping agent in the films. Photoluminescence spectra of the samples were registered on a laser spectral measuring system based on monochromator-spectrograph SOLAR TII MS 7504i where a monochromatic line with the 345-nm wavelength, which was extracted from the spectrum of Xe-lamp by means of double monochromator Solar TII DM160, was used as the excitation source. The research demonstrates that the emmission intensity increases with the thickness of the deposited film, and the position of maximums of the radiation line remains unchanged in a visible wavelength range and on photoluminescence spectra with fixed current density. The change in the density of the cathode current leads to a shift in the position of the photoluminescence spectra maximum, which indicates restructuring of defects and dopant atoms in the doped semiconductor, which in turn changes the position of the corresponding levels in the band gap of the material.

Publisher

Belarusian State University of Informatics and Radioelectronics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3