Effect of ultrasound on nonsteroidal anti-inflammatory drugs complexed with copper, iron, zinc and graphene oxides

Author:

Mikhnavets L. A.1,Tkach A. N.1,Fiadosenka U. S.1,Radziuk D. V.1

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

Abstract

This work aims at the formation of nanocomposites based on graphene and metal oxides (copper-iron, zinc and iron) through ultrasonic interaction (20 kHz) and investigation of their electromagnetic properties by scanning electron microscopy, Raman and absorption spectroscopy, and fluorescence methods. The output of this work implies the development of a single-step ultrasound method to form functional Cu/Fe-, ZnO-and Fe3O4-polyvinyl alcohol nanocomposites, and the ultrasonic conjugation of these nanocomposites with pristine drugs, such as ketorolac and acetylsalicylic acid. We established that formed Cu/Fe-graphene-ketorolac, ZnO-grapheneacetylsalicylic acid and Fe3O4-ketorolac obtain optical and superparamagnetic properties of nanoparticles with improved electromagnetic characteristics due to ultrasonic conjugation. Cu/Fe-graphene-ketorolac nanocomposites are revealed to have a spherical shape (< 100 nm) and acquire improved optoelectronic properties due to copper and iron atoms in the matrix of graphene. It is demonstrated that ZnO-graphene-acetylsalicylic acid nanocomposites obtain properties of fluorescence mainly for electromagnetic interaction with the ZnO phase formed on the surface of graphene. Ultrasonic conjugation of ketorolac with magnetite proved to increase the electron density of Fe3O4-ketorolac that obtains superparamagnetic properties, and its biocompatibility can be improved when coated with polyvinyl alcohol. In general, formed nanocomposites are of great interest in medical electronics and nanomedicine as functional materials with electromagnetic properties being controlled at the molecular and atomic levels. Such nanocomposites can also find application as components in electronic devices for diagnosis and treatment of serious inflammatory disorders. Industries will find the singlestep ultrasound method of special interest because it is eco-friendly and can be scaled up by a versatile spectrum of inorganic and organic materials and drugs.

Publisher

Belarusian State University of Informatics and Radioelectronics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3