CONDENSER STRUCTURES BASED ON BARIUM TITANATE FILMS FORMED BY SOL-GEL METHOD

Author:

Kholov P. A.1,Gaponenko N. V.1,Shaidakova K. V.1,Krymski V. I.2,Filipenya V. A.2,Petlitskaya T. V.2,Kolos V. V.2,Pyatlitski A N.2

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

2. JSC “INTEGRAL” – “INTEGRAL” Holding Managing Company

Abstract

The objective of the work is investigation the dielectric permittivity and dielectric loss tangent of BaTiO3 films in a capacitor structure formed by sol – gel method on a Si/TiOx/Pt substrate. The basis of this capacitor is a four-layer film of barium titanate xerogel with a thickness of about 200 nm. The film was synthesized by sol-gel method at a final annealing temperature 750 °C. The problems related to the development of method of forming multilayer capacitor structures, the analysis of the morphology and phase composition of BaTiO3 film, and also the measurement of the capacitance-voltage characteristics in the frequency range 10 kHz – 2 MHz have been solved. Morphology of the films was analyzed using a Hitachi S-4800 scanning electron microscope. X-ray diffraction spectra was recorded using a DRON-3 automated diffractometer, using monochromatic CuKα radiation. Capacitance-voltage characteristics were obtained using a B1500A semiconductor analyzer. Dielectric constant and dielectric loss tangent, calculated for capacitance measurements, are changed as follows: for a bias voltage of U = 0 V, the change in ε is 232–214, and tanδ 0.022–0.16, and for a bias voltage of U = 10 V, ε occurs in the range 135–124 and tanδ from 0.02 to 0.1. The obtained frequency dependences of the dielectric constant of BaTiO3 films show a decrease in the dielectric constant in the range of 10 kHz – 2 MHz. It was found that, with a BaTiO3 film thickness of less than 100 nm, a thin-film capacitor with a lower platinum electrode is not always formed, which is probably caused by shunting of the structure.

Publisher

Belarusian State University of Informatics and Radioelectronics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3