NeRF IN REINFORCEMENT LEARNING FOR IMAGE RECOGNITION

Author:

Гайнетдинов А.Ф.

Abstract

Актуальность. В статье рассматриваются методы распознавания изображений с использованием нейронных сетей разной архитектуры, в том числе обучения с подкреплением Q-Learning. Метод. Для обучения алгоритмов и их тестирования использовались наборы изображений 6 классов лесных животных. Изучалось 6 вариаций наборов данных, отличие в которых обусловлено разной долей обучающей выборки: от 40 до 80%. Проанализировано семь методик распознавания: CNN-AE и два подхода визуального управления (NeRF-RL, DRQ-V2) обучались на основе двух- и трехмерной сверточной нейросети и Q-Learning. Результаты работы. Все испытуемые модели показывают высокий процент точности независимо от соотношения обучающей и тренирующей выборки. Минимальные результаты были зафиксированы при использовании CNN-AE, тогда как NeRF-RL и DRQ-V2 на основе двухмерных и трехмерных CNN были более точными. Обучение методов NeRF-RL и DRQ-V2 используя метод Q-Learning привел к получению наиболее точных результатов. Использование Q-Learning для обучения алгоритма NeRF-RL позволяет достичь максимальных результатов. Эта архитектура была применена для распознавания животных и распределения изображений по классам. Выводы. Таким образом, объединение алгоритмов NeRF и обучения с подкреплением является эффективным и перспективным методом распознавания изображений для использования в обработке информации со скрытых камер с целью обнаружении лесных животных. This study discusses image recognition methods that exploit different neural networks, including Q-Learning. The algorithms were trained and tested on images depicting 6 different classes of forest animals. A total of 6 image datasets with different amount of training data (40 to 80%) were taken. Here, seven image recognition techniques were analyzed: CNN-AE and two algorithms for visual continuous control (NeRF-RL and DRQ-V2), all trained on a two- and three-dimensional convolution neural network (CNN), as well as Q-Learning. All models had high accuracy; CNN-AE exhibited the lowest recognition accuracy, whilst NeRF-RL and DRQ-V2 based on 2D and 3D CNNs were more accurate. NeRF-RL and DRQ-V2 trained on data using the Q-Learning method yielded the highest accuracy. The use of Q-Learning to train the NeRF-RL algorithm provided the best result. This architecture has been applied for animal recognition and image classification into classes. Based on the research, the combination of NeRF algorithms and reinforcement learning is an effective and promising image recognition method for detecting forest animals in camera-trap images.

Publisher

Ultrasound Technology Center of Altai State Technical University

Reference25 articles.

1. Kamencay P., Trnovszky T., Benco M., Hudec R., Sykora P., Satnik A. Accurate wild animal recognition using PCA, LDA and LBPH // 2016 ELEKTRO. — IEEE, 2016. P. 62-67.

2. Xie Z., Singh A., Uang J., Narayan K. S., Abbeel P. Multimodal Blending for High-Accuracy Instance Recognition // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. — IEEE, 2013. P. 2214-2221.

3. Nguyen H., Maclagan S.J., Nguyen T. D., Nguyen T., Flemons P., Andrews K., Ritchie E. G., Phung D. Animal Recognition and Identification with Deep Convolutional Neural Networks for Automated Wildlife Monitoring // 2017 IEEE international conference on data science and advanced Analytics (DSAA). — IEEE, 2017. P. 40-49.

4. Dellaert F., Yen-Chen L. Neural volume rendering: Nerf and beyond // arXiv preprint arXiv:2101.05204, 2020.

5. Sünderhauf N., Abou-Chakra J., Miller D. Density-aware NeRF Ensembles: Quantifying Predictive Uncertainty in Neural Radiance Fields // arXiv preprint arXiv:2209.08718, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3