RESEARCH OF DIAGNOSTIC PARAMETERS OF COMPOSITE MATERIALS USING JOHNSON DISTRIBUTION

Author:

Babak Vitaliy,Eremenko Volodymyr,Zaporozhets Artur

Abstract

In this paper, it was proposed to carry out a preliminary normalization of diagnostic parameters using the Johnson distribution, which with three basic distribution groups (SL, SB, SU), covers a wide class of empirical distributions. The mathematical description of the family allows us to find the approximating probability density function in an explicit form, to determine the distribution parameters for obtaining the corresponding function (curve), as well as the inverse function for finding the quantiles of the specified levels. To assess the accuracy of the obtained normalized data, they were compared with the data obtained by replacing the resulting law with a Gaussian one. Percentages of values were compared in the implementation under study, which concentrated in the limits of estimated quantiles. Implementations were obtained using the simulation method. By the same method, the correctness (relative systematic error) of determining the quantile values of the specified levels was evaluated. The error value δ was estimated between the conditionally true quantile value calculated from the generated pseudo-general complex and the value estimated using the methods considered in the paper. Obtained data show that the relative error in the calculation of quantiles using the Johnson distribution does not exceed 0.07% and decreases in two orders of magnitude than the currently accepted procedure for replacing sample laws with Gaussian.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surrogate metamodels from digital image correlation for testing high-performance composite vessels;Heliyon;2024-04

2. Theoretical Principles of Acoustic Radiation Created by Corona Discharge;Detection of Corona Discharge in Electric Networks;2023-10-14

3. Mathematical Model for Determining the Geometric Location of the Environmental Pollutant Based on Sensor Data;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

4. Investigation of Systems with Normally and Exponentially Distributed Random Parameters by the Method of “Golden” Binary Structuring;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

5. Some Features of Modeling Ultrasound Propagation in Non-Destructive Control of Metal Structures Based on the Magnetostrictive Effect;Electronics;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3