DEVELOPING A FASTER PATTERN MATCHING ALGORITHMS FOR INTRUSION DETECTION SYSTEM

Author:

Obeidat Ibrahim,AlZubi Mazen

Abstract

Fast pattern matching algorithms mostly used by IDS, which are considered one of the important systems used to monitor and analyze host and network traffic. Their main function is to detect various types of malicious and malware files by examining incoming and outgoing data through the network. As the network speed growing, the malicious behavior and malware files are increasing; the pattern matching algorithms must be faster. In this research paper we are presenting a new method of pattern matching, which could be a platform for enhancement in the future. In this field, researchers spared no efforts to introduce fast algorithms for pattern matching. The Most popular algorithms are Boyer-Moore, Aho–Corasick, Naïve String search, Rabin Karp String Search and Knuth–Morris–Pratt. Based on studying these techniques we are developing algorithms that process the text data, using different algorithm technique and then we’ll test the performance and compare the processing time with the fastest proven pattern matching algorithms available. Document the result and draw the overall conclusion.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. P4Rex: Accelerating regular expression matching with programmable switches;Computer Networks;2024-10

2. Social Engineering Attacks Detection Approach;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

3. A Framework for Detection of MitM Cyberattacks in Smart Grid Networks Based on the Application of the Ensemble Process for Feature Selection;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

4. State-based Sandbox Tool for Distributed Malware Detection with Avoid Techniques;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

5. Malware Detection Tool Based on Emulator State Analysis;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3