USE OF PARTICLE SWARM OPTIMIZATION ALGORITHM FOR DIGITALIZED SINEWAVE SIGNAL PARAMETERS ESTIMATION

Author:

Raimondo Pierfrancesco

Abstract

In the paper is proposed a procedure based on the particle swarm optimization algorithm for parameters estimation of sinewave signals as: amplitude, phase, frequency and offset. Differently from the classical method used to solve this problem (the sine-fitting algorithms), the proposed procedure considers the estimation problem as an optimization one. In fact, the particle swarm algorithm tends to global solution instead of a local solution. The proposed procedure preliminarily estimates the raw value of the parameters under investigation by a time analysis of the input signal. Successively, these values are used by the particle swarm algorithm for the final estimation result. The tests of the proposed procedure determine the most effective cost function for the algorithm and confirm that the achievable performances are in according with the sine fitting algorithm. Moreover, the execution time for the proposed procedure is lower than the sine fitting, making it an interesting alternative.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method of Selecting and Determining the Free Parameters of Swarm Intelligent Algorithms for Optimizing Solutions in GIS;2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2021-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3