Breast Tumors Diagnosis Using Fuzzy Inference System and Fuzzy C-Means Clustering

Author:

Ahmed Ahmed Shihab,Basheer Omer Nather,Salah Hussein Ali

Abstract

Many of the researches have been successful in the field of computer-aided diagnosis because of the important results the intelligent computing approaches have achieved in this field. In this paper the robust classification method is presented, that attempts to classify the tissue suspicion region as normal or not normal by using a Fuzzy Inference System (FIS) using the Fuzzy C-Mean (FCM) clustering for fuzzification of the Gray-Level Co-Occurrence Matrix (GLCM) feature and a match shape function for fuzzification of matrix shape, then by using (T-norm) generate 729 rules (243 rules based on normal DB case, 243 rules based on benign case, 243 rules based on malignant case), after that the best Eighteen rules are selected (best 6 rules based on normal DB case, best 6 rules based on benign DB case, best 6 rules based on malignant DB case) by using genetic algorithm, then make summation for each group if the summation of 6 rules based on normal DB is greater than other summation of two group (best 6 rules based on benign DB case and best 6 rules based on malignant DB case) that mean resulted of the classification step is normal. The model approved efficiency classification rate of 97.5% of input dataset image.

Publisher

Research Institute for Intelligent Computer Systems

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Method for Classifying the Level of Anthropogenic Disasters;Big Data and Cognitive Computing;2023-09-21

2. The Formal Grounds for Construction for Intellimedia Automated System;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3