Machine-Learning Methods in Prognosis of Ageing Phenomena in Nuclear Power Plant Components
-
Published:2021-03-30
Issue:
Volume:
Page:11-21
-
ISSN:2312-5381
-
Container-title:International Journal of Computing
-
language:
-
Short-container-title:IJC
Author:
Sirola Miki,Hulsund John Einar
Abstract
In the Long-Term Degradation Management (LTDM) project we approach component ageing problems with data-analysis methods. It includes literature review about related work. We have used several data sources: water chemistry data from the Halden reactor, simulator data from the HAMBO simulator, and data from a local coffee machine instrumented with sensors. K-means clustering is used in cluster analysis of nuclear power plant data. A method for detecting trends in selected clusters is developed. Prognosis models are developed and tested. In our analysis ARIMA models and gamma processes are used. Such tasks as classification and time-series prediction are focused on. Methodologies are tested in experiments. The realization of practical applications is made with the Jupyter Notebook programming tool and Python 3 programming language. Failure rates and drifts from normal operating states can be the first symptoms of an approaching fault. The problem is to find data sources with enough transients and events to create prognostic models. Prognosis models for predicting possible developing ageing features in nuclear power plant data utilizing machine learning methods or closely related methods are demonstrated.
Publisher
Research Institute for Intelligent Computer Systems
Subject
Computer Networks and Communications,Hardware and Architecture,Information Systems,Software,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献