Stress-Induced Changes in Ubiquinone Concentration and Alternative Oxidase in Plant Mitochondria

Author:

Popov Vasily N.1,Purvis Albert C.2,Skulachev Vladimir P.3,Wagner Anneke M.4

Affiliation:

1. Department of Plant Physiology and Biochemistry, Voronezh State University, Voronezh 394693, Russia

2. Department of Horticulture, University of Georgia, Tifton, GA 31793, USA

3. Department of Bioenergetics, Belozersky Institute for Physical and Chemical Biology, Moscow M.V. Lomonosov State University, Moscow 119899, Russia

4. Department of Molecular Cell Physiology, IMBW, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Abstract

We have investigated the influence of stress conditions such as incubation at 4°C and incubation in hyperoxygen atmosphere, on plant tissues. The ubiquinone (Q) content and respiratory activity of purified mitochondria was studied. The rate of respiration of mitochondria isolated from cold-treated green bell peppers (Capsicum annuum L) exceeds that of controls, but this is not so for mitochondria isolated from cold-treated cauliflower (Brassica oleracea L). Treatment with high oxygen does not alter respiration rates of cauliflower mitochondria. Analysis of kinetic data relating oxygen uptake with Q reduction in mitochondria isolated from tissue incubated at 4°C (bell peppers and cauliflowers) and at high oxygen levels (cauliflowers) reveals an increase in the total amount of Q and in the percentage of inoxidizable QH2. The effects are not invariably accompanied by an induction of the alternative oxidase (AOX). In those mitochondria where the AOX is induced (cold-treated bell pepper and cauliflower treated with high oxygen) superoxide production is lower than in the control. The role of reduced Q accumulation and AOX induction in the defense against oxidative damage is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3