Genes of Human ATP Synthase: Their Roles in Physiology and Aging

Author:

Kagawa Yasuo1,Hamamoto Toshiro1,Endo Hitoshi1,Ichida Masaru1,Shibui Hirobumi1,Hayakawa Morisada1

Affiliation:

1. Department of Biochemistry, Jichi Medical School, Tochigi-ken, 329-04, Japan.

Abstract

The reaction of ATP synthase (F0F1) is the final step in oxidative phosphorylation (OXPHOS). Although OXPHOS has been studied extensively in bacteria, no tissue-specific functions nor bioenergetic disease, such as mitochondrial encephalomyopathy and aging occur in these organisms. Recent developments of the Human Genome Project will become an important factor in the study of mammalian bioenergetics. To elucidate the physiological roles of human F0F1, genes encoding the subunits of F0F1 were sequenced, and their expression in human cells was analyzed. The following results were obtained: A. The roles of the residues in F0F1 are not only to transform the energy of the electrochemical potential (ΔμH+) across the membrane, but also to respond rapidly to the changes in the energy demand by regulating the intramolecular rotation of F0F1 with the ΔμH+ and the inhibitors of the ATPase. B. The roles of the control regions of the F0F1 genes, are to coordinate both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) depending on the energy demand of the cells, especially in muscle. C. The cause of the age-dependent decline of ATP synthesis has been attributed to the accumulation of mutations in mtDNA. However, the involvement of nDNA in the decline is also important because of telomere shortening in somatic cells, and age-dependent mtDNA expression analyzed with ρ° cells (cells without mtDNA).

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3