The Least Action and the Metric of an Organized System

Author:

Georgiev Georgi1,Georgiev Iskren2

Affiliation:

1. Physics and Astronomy Department, TUFTS University, Medford, MA, USA 02155, USA

2. Physics and Astronomy Department, Sofia University, Sofia, Bulgaria 1000, Bulgaria

Abstract

In this paper, we formulate the least action principle for organized system as the minimum of the total sum of the actions of all of the elements. This allows us to see how this most basic law of physics determines the development of the system towards states with less action — organized states. Also we state that the metric tensor can describe the specific state of the constraints of the system, which is its actual organization. With this the organization is defined in two ways: 1. quantitative: the action I; 2. qualitative: the metric tensor gmn. These two measures can describe the level of development and the specifics of the organization of a system. We consider closed and open systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3