Differential In vitro and In vivo Behavior of Mouse Ascorbate/Fe3+ and Diamide Oxidized Erythrocytes

Author:

Lotero L. Alfredo1,Jordán José A.1,Olmos Gemma1,Alvarez F. Javier1,Tejedor M. Cristina1,Diez José C.1

Affiliation:

1. Departamento de Bioquímica y Biología Molecular, Campus Universitario, Universidad de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain

Abstract

Chemical oxidation of mouse erythrocytes has been carried out using two different oxidizing systems namely: Diamide and Ascorbate/Fe3+ together with different concentrations of the oxidant. These oxidation treatments produced different extents of modification in membrane proteins as was observed by electrophoretic analyses that showed a possible formation of high molecular weight aggregates. Lipid peroxidation was also observed as the result of these chemical treatments. The action of these two oxidation treatments produced different extents of lipid peroxidation in which the effect Ascorbate/Fe3+ reached higher values than that shown by diamide treatments. To study the resulting in vitro behavior of such oxidized erythrocytes, we have evaluated the recognition of oxidized erythrocytes by peritoneal macrophages. In the conditions used, diamide oxidized erythrocytes were more highly recognized by macrophages than Ascorbate/Fe3+ treated erythrocytes. However, in both cases an influence of serum factors in the recognition process can be inferred. Additionally, we have correlated on one side the action of different oxidation systems on mouse erythrocytes with different in vivo behavior and organ uptake of the oxidized erythrocytes. On the other side, differential targeting of oxidized erythrocytes to a liver or spleen was observed on dependence of the oxidant used.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3